If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100a^2=49
We move all terms to the left:
100a^2-(49)=0
a = 100; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·100·(-49)
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19600}=140$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140}{2*100}=\frac{-140}{200} =-7/10 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140}{2*100}=\frac{140}{200} =7/10 $
| 3x+5+21=2x-x | | 12v=11 | | (3x+2)/2=(5x-5)/3 | | m^2=-67 | | 26+2.4c=22.5 | | -6y+15-3y=114+2y | | 2x+74=184 | | 3=-8+4x-3x | | -15+12x=5x+7-3x | | k^2+6=7 | | 4x+4-3x=-8 | | y=-5+70 | | -24=-x+5x | | 5(x-2)=x+20 | | 4x+7x=-88 | | -4(-x+9)+5=2-(-5x-4)-2 | | 4x-16=54+2× | | 3=1/2x+5/2 | | -4(-x+9)+5=2-(-5x-4)- | | (1/2)2x=162 | | 8y-28+8y=180 | | 7(14−28x)=20 | | 3h-7h+11=17 | | -6=x+2-5x | | (1/8)^3x(64^2x+1)=4 | | 4.58+y=2.2 | | 1/3n−4=4/3−1/3n | | 2x-6x+24=4 | | 3=9+c | | 215=5x+10 | | 21x+7=63 | | 14+8n=5n-6 |